

STER-STACIR™

Sterlite® Super Thermal Alloy Conductor Invar Reinforced (STACIR) conductor has outer layers composed of Super Thermal Aluminium (STAL) alloy wires that can operate up to 210°C (410°F). The inner core is composed of aluminium clad INVAR wires. INVAR is a metal alloy with 36% Ni in steel.

Super-Thermal Resistant Aluminum Alloy wire (STAL) **APPLICATION**

STACIR/AW conductors are suited for re-conductoring applications. The capacity of existing transmission line can be enhanced by simply replacing the existing conductor without any modification to the tower.

Aluminum-clad INVAR Wire

BENEFITS

- Can carry 100% more current than that of ACSR of the same size, while maximum sag and maximum working tension remain the same as that of ACSR.
- No modification or reinforcement is required to existing towers for uprating transmission and distribution lines.

TECHNICAL SPECIFICATIONS

PROPERTIES	STACIR (ACSR MOOSE EQUIVALENT)		STACIR (ACSR ZEBRA EQUIVALENT)		STACIR (ACSR PANTHER EQUIVALENT	
Typical factors	3.53 mm	0.1390 in	3.18 mm	0.1252 in	3.00 mm	0.1181 in
Reference specifications	IEC 62004		IEC 62004		IEC 62004	
Total cross section area	597.00 mm ²	0.9254 in ²	484.50 mm ²	0.751 in ²	261.50 mm ²	0.4054 in ²
Conductive wire	Al Zr AT3		Al Zr AT3		Al Zr AT1	
Core wire	Aluminium clad Invar		Aluminium clad Invar		Aluminium clad Invar	
Conductor diameter	31.77 mm	1.2508 in	28.62 mm	1.1268 in	21.00 mm	0.8268 in
Weight	1993 kg/gm	1339.2 lbs/mile	1582 kg/km	1063.1 lbs/mile	939 kg/km	631.0 lbs/mile
Ultimate tensile strength	14641 kg	32277.84 lbs	11968 kg	26384.89 lbs	8436 kg	18598.17 Ibs
DC resistance at 20°C temperature	0.06 Ω/km	0.09 Ω/mile	0.07 Ω/km	0.11 Ω/mile	0.13 Ω/km	0.21 Ω/mile
Maximum operating temperature	210°C	410°F	210°C	410°F	210°C	410°F
Current carrying capacity at maximum operating temperature	1871 Amp		1626 Amp		1040 Amp	

Assumptions: Ampacity is calculated based on, 45°C (113°F) ambient temperature, 0.6 m/s wind velocity, 0.5 as coefficient of solar absorption, 0.6 as coefficient of emmisivity and 1200 wt/sqm coefficient for solar radiation, at sea level.